Increased vascular smooth muscle contractility in TRPC6-/- mice.
نویسندگان
چکیده
Among the TRPC subfamily of TRP (classical transient receptor potential) channels, TRPC3, -6, and -7 are gated by signal transduction pathways that activate C-type phospholipases as well as by direct exposure to diacylglycerols. Since TRPC6 is highly expressed in pulmonary and vascular smooth muscle cells, it represents a likely molecular candidate for receptor-operated cation entry. To define the physiological role of TRPC6, we have developed a TRPC6-deficient mouse model. These mice showed an elevated blood pressure and enhanced agonist-induced contractility of isolated aortic rings as well as cerebral arteries. Smooth muscle cells of TRPC6-deficient mice have higher basal cation entry, increased TRPC-carried cation currents, and more depolarized membrane potentials. This higher basal cation entry, however, was completely abolished by the expression of a TRPC3-specific small interference RNA in primary TRPC6(-)(/)(-) smooth muscle cells. Along these lines, the expression of TRPC3 in wild-type cells resulted in increased basal activity, while TRPC6 expression in TRPC6(-/-) smooth muscle cells reduced basal cation influx. These findings imply that constitutively active TRPC3-type channels, which are up-regulated in TRPC6-deficient smooth muscle cells, are not able to functionally replace TRPC6. Thus, TRPC6 has distinct nonredundant roles in the control of vascular smooth muscle tone.
منابع مشابه
Classical transient receptor potential 1 and 6 contribute to hypoxic pulmonary hypertension through differential regulation of pulmonary vascular functions.
Hypoxic pulmonary hypertension is characterized by increased vascular tone, altered vasoreactivity, and vascular remodeling, which are associated with alterations in Ca(2+) homeostasis in pulmonary arterial smooth muscle cells. We have previously shown that classical transient receptor potential 1 and 6 (TRPC1 and TRPC6) are upregulated in pulmonary arteries (PAs) of chronic hypoxic rats, but i...
متن کاملThe effect of aqueous extract of pomegranate seed on rat uterine smooth muscle contractility
Introduction: Considering the importance of uterine contractions in uterus retraction and reducing post-partum hemorrhage and the current findings on the effect of the alcoholic extract of pomegranate seed on the uterine contractility, only few studies were made on this issue. In the present study the cumulative effect of the aqueous extract of pomegranate seed on the uterine smooth muscle c...
متن کاملA common mechanism underlies stretch activation and receptor activation of TRPC6 channels.
The TRP family of ion channels transduce an extensive range of chemical and physical signals. TRPC6 is a receptor-activated nonselective cation channel expressed widely in vascular smooth muscle and other cell types. We report here that TRPC6 is also a sensor of mechanically and osmotically induced membrane stretch. Pressure-induced activation of TRPC6 was independent of phospholipase C. The st...
متن کاملPDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression.
Capacitative Ca(2+) entry (CCE) through store-operated Ca(2+) (SOC) channels plays an important role in returning Ca(2+) to the sarcoplasmic reticulum (SR) and regulating cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)). A rise in [Ca(2+)](cyt) and sufficient Ca(2+) in the SR are required for pulmonary artery smooth muscle cell (PASMC) proliferation. We tested the hypothesis that platelet-de...
متن کاملHeteromultimeric TRPC6-TRPC7 channels contribute to arginine vasopressin-induced cation current of A7r5 vascular smooth muscle cells.
The molecular identity of receptor-operated, nonselective cation channels (ROCs) of vascular smooth muscle (VSM) cells is not known for certain. Mammalian homologues of the Drosophila canonical transient receptor potential channels (TRPCs) are possible candidates. This study tested the hypothesis that heteromultimeric TRPC channels contribute to ROC current of A7r5 VSM cells activated by [Arg(8...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 25 16 شماره
صفحات -
تاریخ انتشار 2005